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Abstract with the remaining digits appearing as distractors. In varied
mapping paradigms, targets on one trial may be distractors onIt is widely held that there is a distirction between attentive atd another trial (e.g., the targets that the subject has to search for

auaomatic cognitive processing. In research on attention using on a particular trial have been selected in the experiment by
visual search tasks, the detection performance of humansubjects
in consistent mapping paradigms is generally regarded as indi- randomly sampling four of the ten digits, with the non-selected
cating a shift, with practice, from serial, attentional, controlled items being potential distractors; since a new sample is taken
processing to parallel, automatic processing, while detection every trial, individual digits change roles as targets/distractors
performance in varied mapping paradigms is taken to indicate over trials).
that processing remains under artntional control. This paper A reliable finding from varied mapping studies is
proposes a priority learning mechanism to model the effects of that reaction time increases roughly linearly with mem-
practice and the development of automaticity, in visual search ary set size ([Kristofferson 1972a]). Consistent map-
tasks. A connectionist simulation model implements this learn- ping studies have found that, with practice, search
ing algorithm. Five prominent features of visual search practice
effects are simulated. These are: 1) in consistent mapping tasks, becomes much faster and memory set size has less
practice reduces processing time, particularly the slope of reac- impact on reaction times than in the varied map-
tion times as a function of the number of comparisons; 2) in ping condition ([Neisser 1963, Neisser, Novick & Lazar 1963,
varied mapping tasks, there is no change in the slope of the Kristofferson 1972b, Schneider & Shiffrin 1977]).
reaction time function; 3) both the consistent and varied effects These findings have led to the hypothesis that, in varied map-
can occur concurrently; 4) reversing the target and distractor ping, each item in the display is serially compared with items
sets produces strong interference effects; and 5) the benefits of in the memory set, with each comparison taking on the order
practice are a function of the degree of consistency of 50 msec. In contrast, practice in the consistent mapping

condition leads to a switch from serial, attentional, to parallel,
Introduction automatic processing ((Shiffrin 1988]).

Our focus in this paper is on priority learning, which weHuman performance changes dramatically as practice devel- propose as a mechanism that models the effects of practice, and
ops, leading to improved performance and a decrease in de- the development of automaticity, in visual search tasks. We
mands made on attentive resources. Many frameworks have review specific experimental results that have been obtained in
discussed this transition (see [Shiffrin & Schneider 19771). studies involving visual search tasks, and present simulations
However, there is no generally accepted model of how per- indicating how priority learning can provide an account of the
formance changes with practice. Moreover, although theo- observed practice and automaticity effects.
retical frameworks have been proposed, they have generally
not provided a detailed computational account of hypothesized
processing. An architecture for attentional effects in visual

In this paper, we present a computational model of practice search tasks
effects in visual search tasks (see discussion below), which This section describes briefly the larger architecture for at-
have played an important role in research on attentional pro-
cesses. The term attention is generally used to indicate aspects tentional processing within which the priority learning model
of human cognitive processing that the subject can control, is embedded. The modular architecture (Figure 1) combinesand that involve capacity or resource limitations. Attentional standard connectiorist components such as connectionist unisand hatinvlvecapcityor esorcelimtatins.Aflntinal in a multi-layer organization (see ['Rumelhart et a. 1986], for
processing is taken to be a slow, serial activity, with the focus example) with control elements that modulate the flow of
of attention limited to being one thing at a time. However,
with practice in consistent tasks, automatic processes develop information between modules. The control involves a gat-
allowing parallel processing that is faster and not as limited by ing unit (Unit I in the figure) that provides a scalar mul-attenonal resourcest .  tiplicazon of a module's output vector. The gating unit

receives input from priority units within the module, and
The distinction between controlled and automatic processes from an external attentional control that coordinates activ-

has been the focus of much research in the field, particularly ity between modules. This architecture parallels certain
in visual search tasks. In such tasks, stimuli are presented aspects of neurophysiology, and is detailed elsewhere (see
visually to the subject, who is required to detect the presence [Schneider & Detweiler 1987, Shedden & Schneider 1991,
of members of a set of target stimuli (the memory set). Non- Schneider & Oliver, forthcoming]).
target stimuli are termed distractors. In consistent mapping Figure 1 illustrates the overall model of a visual search task.
paradigms, a target stimulus will never appear as a distractor "Visual" modules VI and V2 represent areas of cortical visual
on any trial - for example, the subject has to search the display processing, each corresponding to the small area of the visual
for the memory set digits (e.g., the digits (84 5 2}) on all trials, field in which one stimulus appears. Each module consists

This work was supported in part by ONR contracts N00014-87K-0397 of an input layer (labeled I in the figure) and an output tayer
and N00014.86-K-0678 and ARI contract MDA903-89.K-0174to the second (lzbeled 0). The input layer projects via weighted connections
author, to the output layer, which projects to a module at the next

'See [Shiffnn 19881 for an exellent review of rescarcn on auenuon. level of processing (Level 2). Each module also has a layer
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Sstm~ulu ~,.u nand allows automatic transmission of the output in the absence

F- ECitatory control flow . Inhibilry conli'rd fow of attentional control.

E 2 F Priority learningfrom

Comparator A sensory system that includes parallel input at early stages
with serial processing at later stages would benefit from
a filtering system that prioritizes inputs for limited se-

. . ... ..................... rial processing. Early visual input processing is parallel
M-dW, VIE N4,, ,2 ((Ericksen & Spencer 1969]). With a priority filtering scheme.

o :1 0 a serial processing system can processes stimuli in their or-

l i a) der of importance following the rating of stimuli based on a2) 2 parallel low level interpretation of stimuli ([Norman 1969]).

TLis allows the most important stimulus to be processed
x • first. Humans appear to have such a priority filtering scheme
. ([Yantis & Johnson 19901).

Our computational implementation of priority filtering is in

...... z i .... the form of a connectionist network that associatively maps
______,, __________each input vector to a scalar priority. For example, in visual

[External Atten onai,ot search, each letter would evoke a unique input vector of length
50 in a module (see Figure 1). Each input vector would asso-

Figure 1: Architecture of the model. Stimuli from earlier stages ciatively evoke a scalar value specifying the priority (on a scale
of visual processing enter the input layers I of visual modules VI and of 0 through 10, represented by activation of the priority units)
V2 and propagate forward to the output layers 0 (Level 1 of pro- for that input vector. Input vectors evoking a high priority
cessing). The output layer vectors are sequentially transmitted (under are transmitted to higher levels whereas low prionty vectors
external attentional control) to a comparator module (not shown), are gated off, blocking the transmission. Many modules in
where they are serially compared with memory set items. Stimuli the visual system can receive input simultaneously, with the
in the input layers of VI and V2 also evoke apriority level activa- respective input vectors each evoking a priority level, in par-
Uon over the layer of priority units P. which also receive feedback allel. If only one module contains a high priority target, it will
from the comparator module. The priority levels provide the basis "pop out" of the display ([Triesman 1988). This occurs by
for a transition from serial transmission and comparison of stimuli having the priority units inhibit the gating units, thus allowing
(atuen ive processing) to parallel, aiaomaic processing (see text), the output vector to be transmitted automatically to the next

level of processing3 .
The priority units must be trained to associate input vec-

of priority units (labeled P). which receives input from the tors to the appropriate priority levels. This is accom-
module's input layer. plished in the current model via feedback from the com-

Unit 1 within each module "gates" the forward propagation parator stage. We assume that processing at the compari-
of activation from the output layer. When this gating is in ef- son stage results in higher output for more important stimuli
fectnovectortransmissionfromtheoutputlayerofthemodule ([Schneider& Detweiler 1987]). A scalar transform of this
takes place, although the activation of the output layer is un- output signal is fed back to all modules at the earlier stage.
changed (e.g., as in the inhibition of the axon initial segment, This becomes the target level for the prionty units of the trans-
but not the soma, of a neuron - see [Douglas & Martin 19901). mitting module. Shortly after a vector is transmitted out of a
However, the external attentional control can (by exciting Unit module under External Attentional Control, the priority units
2, which inhibits Unit 1) inhibit Unit I, which will release are re-trained to approximate the feedback signal via associa-
Unit l's gating effect and lead to onward transmission of the Live learning.
vector in the output layer of that nrodule. The attentional con- The net result of priority learning is that if the stimulus
trol thus provides for the sequential transmission of vectors in a visual module turns out to be a target, then the priority
from the visual modules, which models the shifting of atten- learning network is re-trained to evoke a higher priority than
tion from one area of the visual field to another, i.e.. from one was currently evoked: if the stimulus turns out to be a distractor.
displayed stimulus to another, in the visual search task (see then the priority learning network is re-trained to evoke a lower
[Detweiler & Schneider, forthcoming). priority than was currently evoked.

When the output layer vector of each module propagates The predicted effects of the learning of pnonues are as fol-
forward in turn, it is compared serially with memory set items lows. In a consistent mapping task over time. stimuli that
in a "comparator" module (not shown in Figure 1)2. If a visual enter modules V I and V2 and correspond to targets will evoke
stimulus matches a memory set item, then the output vector increasingly high pnonues in those modules. Ahile stimuli
of that visual module also propagates forward to a 'motor"
module at Level 2 , initiating the motor sequence necessary to 3 Figure 1 shows the excitatory connecUons from the pnoratv units to L nt 2.

produce the detection response. which inhibiLts Unit I. Lf the pnonty level e,.okej t, a stimulus is above some
This paper describes the priority learning aspects of the threshold. Unit 2 can inhibit Unit I SUfiCICflt to release 't gating efect on the

output liver, resulting in an i"utoma c- transmission from the visual mo,.juie

model, whereby learning alters the activity of the priority units to the motor module. in this case. the motor response is triggered v.,iL!out

any sequential scanning of modules under attentional control, or comparison
2This comparison can be performed by summing the transmiued vector of the sutmulus in a module with memory set items. For simplicity. %e have

.. th -ach memory sct itm Into a layer of connectoniLstunis The %um of the oritied discussion of control signals from the pnontv units to the este-nal

squared acuvation ofeach unit in the receiving layer then provides a measure asienuonal control. These are descnbed in [Shneider & Detweder 19871. and
of the correlation, or sumaray between the two vectors. If activauoni s above provide a mechanism for external atiensional control to entirely ignore a very
a cneron level, themt is a maicA of the stimulus with a memory set item, low phonry sumulus, i.e.. tofai to iniuate transmission from that module to
otherwise no match. See [Shedden & Schneider 19911 for detads. the comparator.
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corresponding to distractors will have increasingly low priori- the Widrow-Hoff learning algorithm ([Widrow & Hoff 1960]).
ties. Once the pnonties evoked by a target stimulus in modules One epoch consisted of presentation of the enure set of stimuli,
VI or V2 have crossed threshold level r, the presentation of with appropriate incrementing/decrementing of priority after
that stimulus in either of those modules will lead to automatic presentation of each stimulus.
transmission from the output layer of that module to the motor
module, without sequential scanning of the modules, or serial Simulations of priority learning
comparison of their "contents" with memory set items. For
distractor stimuli, low evoked priorities result in their being Simulation 1: Consistent mapping. In consistent map-
ignored by the attentional control. Thus, serial, attentional ping studies with human subjects, the rate of search has been
comparison is supplanted by parallel, automatic processing, shown to become much faster with practice ([Neisser 1963]).
resulting in reduced reaction times for the detection of targets, Studies with well-practiced human subjects have exhib-
and in the independence of reaction time from memory set size. ited reaction times that varied relatively little with mem-

In a varied mapping task, however, since a particular stim- ory set size ([Schneider & Shiffrin 1977, Experiment 2],
ulus is sometimes a target and sometimes a distractor, there [Neisser, Novick & Iaar 1963]).
is no gradual increase/decrease of priorities for different sets In our simulations of consistent mapping, the training set
of stimuli. Instead, the priority levels of stimuli will tend to for a module consisted of 16 random vectors, which were
fluctuate around the default priority level. That is, the evoked partitioned into two disjoint sets of 8 stimuli each, one set being
priority levels of presented stimuli do not cross threshold, and designated targets, and the other distractors. During priority
so there is no automatic over-ride of attentional processing, learning, the evoked priorities were consistently incremented
and no "ignoring" of stimuli. The production of the detection or decremented for the two sets of stimuli respectively.
response has to continue to be through serial attentional corn- The results of the consistent mapping simulations are shown
parison. Accordingly, there will be no decrease in reaction in Figure 2a. The slopes show the evoked mean priority level
times, or in their linear relationship with memory set size4 .  of targets and distractors, as a function of training (epochs).

With increased epochs of training, target stimuli come to evoke

Implementation of priority learning increasingly high priorities, while distractor stimuli have in-
creasingly low priorities. As discussed in the section on pri-

We ran simulations of the priority learning component of the ority learning, a visual module in which a stimulus evokes a
architecture outlined above, using a single two-layer connec- priority level of greater than some threshold - will automati-
tionist network incorporating the input layer and priority layer cally transmit the vector in its output layer.
of one visual module shown in Figure 1. Our aim was to Figure2b shows reaction times for targets in consistent map-
examine whether a priority learning scheme would provide a ping experiments with human subjects, who were trained over
basis for the practice effects observed in consistent mapping a period of 36 days ([Kristofferson 1972b]). Memory set sizes
and varied mapping paradigms. of one, two and four were used. For each set size, there was a

Stimuli entering the network's input layer (Input, corre- decrease in reaction time over the training period, which is in-
sponding to layer I in Figure 1) are vectors of length 50, with terpreted as being largely due tt. speeding up of non-attentional
each element being in the range ±1.0; that is, the input layer components such as the motor response component of the task,
consists of 50 units. The priority layer (Priority, correspond- which is also the case in varied mapping tasks ([Shiffrin 1988,
ing to layer P in Figure 1) consists of 10 units 5. A stimulus in page 748]). Figure 2b also illustrates the non-linear set size
Input is transmitted in feed-forward fashion to Priority. Net functions characteristic of consistent mapping.
input to each priority unit is computed as the weighted sum The priority levels of targets in our simulations of consis-
of inputs from all the input units. The priority level evoked tent mapping give rise to similar reaction times. On each
by a stimulus is computed by a simple count of the number of epoch, search time S for a target was simulated as follows.
priority units in Priority that have positive net input. Thus if If the priority level evoked by the stimulus was greater than
all ten priority units have negative net input, the priority level a threshold level r, then the stimulus would evoke automati..
is computed as 0; if n priority units have positive net input, the detection, taking "automatic response time" A. If the priority
priority level is n, with the highest possible priority being 10. level was below threshold, then the target would have to be
Bias to the priority units is distributed linearly over the range compared serially with memory set items, with each such com-
±0.40, so that five priority units have a positive bias, and five parison taking a constant "comparison time" C. We assumed
a negative bias. In the absence of input to the priority units non-terminating search, so that the number of comparisons re-
from Input, therefore, the evoked priority level has the default quired is equal to memory set size in. Total reaction time for
value of 5. a target was therefore calculated as (i) a base time B, repre-

When astimulus is presented to the network,apriontyvector senung non-attentional factors, plus (ii) search time S, which
is evoked at the priority layer. The network is then re-trained was either (a) automatic detection time A (if the pronty level
to evoke, for the current stimulus, either a higher priority level was greater than 7), or (b) controlled response time equal to
than currently evoked (if the current stimulus is designated companson time C times memory set size m (if the priority
a target), or a lower priority level than currently evoked (if level was less than r).
the current stimulus is designated a distractor)6 . This will be The time per comparison C was taken to be 50 msec, an I
referred to as the incrementing and decrementing of priority, the time for an automauc response, 40 msec. We used pnonty
respectively. The simulations described here have employed threshold r = 8 0. We used a base reaction time B of 290 msec',

Akinson At Juula ([Atkinson & Juola 19731) have presented a simiar which decayed to about 230 msec over 200) epochs of trainin,
mo ecncy ulearng. n &h sumu of n97miedhae preisnequir simulating the speed-up of non-attentional components of re-model of recency learnin wnich stimuu of Lratrmediate familanty requ are

attenuotnal scauining while novel stawnuh do noL. action times'. Figure 2c shows the simulated reaction times,
3Although our simulations have used a layer of 10 pnonty units, it should

be possible to achieve the same effecu with a single pnonty untL These figures were derived from the human suhbect data hv subtrating
6 Thne higher or lower pnonry levels correspond to modulation of pnonty the trme for one attentional companson (50 msec) from total reaction time for

:ayer activaions by feedback from the comparator module, memory set size one (a) at Days 1-6 (approximately 340 msec). and tb) at

536



(*)(b) (C)

0." .*~

O.W.

a *..-3j-O.'-- w

VA~*1 -atatr M

(d) M* t

M" Pv~~l WN&"' 1,
-. 0-s

* £e...S, - 00

Up 25- 'W

Mg (hi) )

TcCViv A 'C*

--. -i------- ----

a- 1 020

Figure 2: Priority learning simulation results. (a) Pnionty levels in consistent mapping simulation (Simulation 1). (b) Human subject

reaction times for target stimuli in a consistent mapping task. after M. i'istofferson. "When Item Recognition and Visual Search Functions are
Similar ", Pecpinand Psychophysics, 1,p31.()Smltdreaction times for targets, averaged over five consistent mapping si mulabon
runs (Simulation 1). (d) Priority levels in vanied mapping simulation (Simulation 2). (e) Human subject reaction times for all stimuli in a varied
mapping task, after M. Kristofferson. "Effects of Practice on Character Classification". Canadian Joarnal of Psychology 26. p.57. (C) Simulated
reaction times for all stimuli, in varned mapping simulation (Simulation 2). (g) Pnonry levels with reversal of targetsidistractors in consistent
mapping (Simulation 4). (h) Detection accuracy with reversal of targets/distractors in consistent mapping (Simulation 4). (i) Priority levels of
stimuli with varying degrees of consistency (Simulation 5).
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for memory set sizes of one, two and four. Levels of practice We ran simulations in which 32 stimuli were partitioned into
are shown in terms of average reaction time over blocks of two sets of 16 stimuli each. One set of 16 stimuli represented
50 epochs, corresponding to the average reaction times over a consistent mapping task: 8 of the stimuli were treated as
blocks of days in Figure 2b. targets, and the other 8 as distractors. The other set of 16

As in the human data (Figure 2b), the simulation results stimuli represented a varied mapping task, and the stimuli
(Figure 2c) show a downward shift (with practice) of reaction were treated randomly as targets and distractors. One epoch
times for each memory set size; this is the combined result of involved presentation of all 32 stimuli, and represented the
decreasing base response times as well as of developing auto- simultaneous performance of both the consistent and vaned
matic responses. Moreover, the reaction times for different set mapping tasks on different sets of stimuli.
sizes at a particular level of practice exhibit the non-linearity The priority levels of consistently mapped stimuli (which
expected in a consistent mapping task. Overall, the simulation were consistently either targets or distractors) separated as in
results appear to model the human data quite well8 .  the consistent mapping task alone. The average evoked prior-

ity of the varied mapping stimuli remained close to the default
Simulation 2: Varied mapping. Varied mapping studies priority level of 5, as in the varied mapping task alone. Thus
with human subjects have found that search time continues the priority levels of both the consistent and varied mapping
to be a linear function of memory set size, even after practice stimuli were similar to those in each of the tasks performed
([Kristofferson 1972a)). In our simulations of varied mapping, independently, indicating that practice effects in the combined
the training set for a module consisted of 16 random vectors, consistent and varied mapping task can be modeled in terms
The priority level for each stimulus was incremented or decre- of priority learning under the same assumptions as for the
mented at random, modeling the effect of stimuli not being independent tasks, in conformity with the findings of the ex-
treated consistently either as targets or distractors. periment described above.

Results from the varied mapping simulations are shown in
Figure 2d, which plots the mean evoked priority of all stimuli. Simulation 4: Target/distractor reversal in consistent map-
The mean priority levels fluctuate around the "default" priority ping. Implicit in the priority learning scheme we have pre-
level of 5, even with extended practice, as a result of the non- sented is the hypothesis that, in consistent mapping, with prac-
consistent treatment of stimuli. Note that in the simulation tice, target stimuli come to "attract attention" to themselves.
results shown, there is an initial random increase in mean Shiffrin and Schneider empirically verified the prediction that
priority; in other simulations, there was an initial decrease in if the set relationshipsare reversed after the priorities have been
priorities. But in all cases, the mean priority settled around the established, subjects' performance deteriorates below that of
value of 5. novice subjects. For example, in initial practice, targets might

Human reaction times from a varied mapping task be {A B C}, with {X Y Z} as distractors. After reversal, {X
([Kristofferson 1972a]) are shown in Figure 2e (all stimuli), Y Z} would be the targets, and {A B C} the distractors. This
which shows that detection times remain linear with memory reversal is expected to produce deterioration because the stim-
set size, even with extended practice. The priority levels of uli that were previously targets attract attention away from the
stimuli in our varied mapping simulation give rise to similar previous distractors that become the new target stimuli.
reaction times, calculated in the same way as for consistent In the experiments, subjects practiced a consistent mapping
mapping (Figure 20. As in the human subject data, practice task ([Shiffrin & Schneider 1977, Experiment 1]). Once per-
does not change the linearity of set size functions. The reason formance had stabilized (2100 trials), targets and distractors
for this is that, since few stimuli achieve threshold priority were interchanged. On reversal, detection accuracy dropped
levels, serial comparison remains the only basis for target de- to below the level it had been at the beginning of the original
tection. Automatic detection does not develop, and therefore consistent mapping task (approximately 50 percent), and 900
search functions remain linear with set size. Thus our simula- trals were needed for accuracy to return to the novice level
tion provides a good match with the observed varied mapping with targets and distractors reversed. Subsequently, gradual
results9 . re-learning occurred, and accuracy reached the previously es-

tablished level.
Simulation 3: Consistent & Varied mapping combined. We simulated this reversal in a consistent mapping task. A
Schneider and Fisk conducted an experiment in which subjects consistent mapping simulation was run with a set of target
were asked to carry out a consistent mapping task and a var- stimuli and a set of distractor stimuli for 1000 epochs. At
ied mapping tas-k simultaneously ([S,.hneider & Fisk 1982a1). the end of 1000 epochs, the targets and disractors were re-
The findings were that both tasks could be accomplished si- versed, i.e.. the prionues of the former distractors were now
multaneously about as well as when each task was camed out consistently incremented, and those of the former tar6,:L .v-re
alone, now consistently decremented. The simulation was run in this

reversed condiLion for a further 1000 epochs.
Dayi 31-36 (approximnately 280 meset). This decrease in base time, frm 290 Figure 2g shows that the mean pnority levels of the originalmsec to 230 rsec. was fitted by an exponential function with constant 0.9985.as a first aroxlmauO targets/distractors increase/decrease over the first 1000 epochs

'Our model predicts that raction time functions will become perfectly flat of consistent mapping training. When targets and distractors
at Some pomL"t This does occur in our iLmuiauons, by approx. 400 epochs of are reversed at epoch 1001. the priornty levels of former targetstraining start dropping sharply, and those of former distractors start

9Not that the behavior of the slopes of simulated reaction times fit the increasing sharply ,
human data quite well, which was he mator focus of miterst in this paper.
By contrast, Lhe changes in intercept (i e., base reaction tWm) mrulatons ',ecomputed an naccuracy measure as follows: a eiven sum-
do not fit the human data well. This is because simulation of the base time ulus presentation was considered to have evoked an accurate
practice effect did nOt include an asymptote effect and hence overestimated response either if (i) the stimulus was a target, and evoked
the decrease in base Lime. With humans, decreases in base time seem to
asymptote at approximatelv 200msec. Adding an additionalparanetertothe a priority of above threshold, or (ii) it was a distractor. and
modelwouldailowa goodfitofhoththeconstantslopeanddecliningintercept evoked a priority of below threshold. The threshold pority
effect in vaned mapping. level used was 9.50. Figure 2h shows the variation of this
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accuracy measure. At the start of initial consistent mapping provides a fairly good account of practice and automaticity
training, accuracy was approximately 50 percent, and this im- effects in visual search tasks.
proved steadily, asymptoting by about 500 epochs of training.
When targets and distractors were reversed at epoch 1001, References
accuracy dropped sharply, to below the level at the start of [Ainson & Juola 19731 Atkinson, R. & Juola, J. 1973. Factors influencing
the simulation, and it required approximately 100 epochs of speed and accuracy of word recogniuon. In S. Komblum (ed.), Atepuion

training to reach that level (50 percent). Beyond this point, and performance [V. New York: Academic Press.

re-learning occurred gradually, and by epoch 1500, accuracy [Detweiler & Schneider, forthcoming] Detweiler. M. & Schneider, W. Mod-
ha retrned octhed prviousll, maximu. Tehs t , siuaon eling the acquisition of dual task skill in a connectionist/control archi-
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